买卖股票的最佳时机问题汇总
Yuxuan Wu Lv13

核心框架

一、穷举法

一般dp的状态选择方程为:

1
2
3
4
for 状态1 in 状态1的所有取值:
for 状态2 in 状态2的所有取值:
for ...
dp[状态1][状态2][...] = 择优(选择1,选择2...)

买卖股票的这类问题,通常有三种选择:

每天都有三种「选择」

买入、卖出、无操作,我们用 buy, sell, rest 表示这三种选择。

但问题是,并不是每天都可以任意选择这三种选择的,因为 sell 必须在 buy 之后,buy 必须在 sell 之后。那么 rest 操作还应该分两种状态,一种是 buy 之后的 rest(持有了股票),一种是 sell 之后的 rest(没有持有股票)。而且别忘了,我们还有交易次数 k 的限制,就是说你 buy 还只能在 k > 0 的前提下操作。

即之前说的 rest 的状态,我们不妨用 1 表示持有,0 表示没有持有

1
2
3
4
5
6
7
8
9
dp[i][k][0 or 1]
0 <= i <= n-1, 1 <= k <= K
n 为天数,大 K 为最多交易数
此问题共 n × K × 2 种状态,全部穷举就能搞定。

for 0 <= i < n:
for 1 <= k <= K:
for s in {0, 1}:
dp[i][k][s] = max(`buy`, `sell`, `rest`)

比如说 dp[3][2][1] 的含义就是:今天是第三天,我现在手上持有着股票,至今最多进行 2 次交易。

dp[2][3][0] 的含义:今天是第二天,我现在手上没有持有股票,至今最多进行 3 次交易。

最终答案是:

dp[n - 1][K][0]

即最后一天,最多允许 K 次交易,最多获得多少利润

最后一定是0,也就是手上不持有股票

二、状态转移框架

image-20210810133703555

手中不持有股票【0】

1
2
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
max( 选择 `rest` , 选择 `sell` )

要么是我昨天就没有持有,然后今天选择 rest,所以我今天还是没有持有(dp[i-1][k][0]);

要么是我昨天持有股票,但是今天我 sell 了,所以我今天没有持有股票了(dp[i-1][k][1] + prices[i])。

手中持有股票【1】

1
2
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
max( 选择 `rest` , 选择 `buy` )

要么我昨天就持有着股票,然后今天选择 rest,所以我今天还持有着股票;

要么我昨天本没有持有,但今天我选择 buy,所以今天我就持有股票了。

如果 buy,就要从利润中减去 prices[i]

如果 sell,就要给利润增加 prices[i]。

今天的最大利润就是这两种可能选择中较大的那个。

而且注意 k 的限制,我们在选择 buy 的时候,把 k 减小了 1,很好理解吧,当然你也可以在 sell 的时候减 1,一样的。

Base case

1
2
3
4
5
6
7
8
9
10
dp[-1][k][0] = 0
解释:因为 i 是从 0 开始的,所以 i = -1 意味着还没有开始,这时候的利润当然是 0 。
dp[-1][k][1] = -infinity
解释:还没开始的时候,是不可能持有股票的。
因为我们的算法要求一个最大值,所以初始值设为一个最小值,方便取最大值。
dp[i][0][0] = 0
解释:因为 k 是从 1 开始的,所以 k = 0 意味着根本不允许交易,这时候利润当然是 0 。
dp[i][0][1] = -infinity
解释:不允许交易的情况下,是不可能持有股票的。
因为我们的算法要求一个最大值,所以初始值设为一个最小值,方便取最大值。

精简版

1
2
3
4
5
6
7
base case:
dp[-1][k][0] = dp[i][0][0] = 0
dp[-1][k][1] = dp[i][0][1] = -infinity

状态转移方程:
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])

算法实战

121. 买卖股票的最佳时机

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0

示例 1:

1
2
3
4
输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。

示例 2:

1
2
3
输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。

框架实战

此处k=1

1
2
3
4
5
6
7
8
9
dp[i][1][0] = max(dp[i-1][1][0], dp[i-1][1][1] + prices[i])
dp[i][1][1] = max(dp[i-1][1][1], dp[i-1][0][0] - prices[i])
= max(dp[i-1][1][1], -prices[i])
解释:k = 0 的 base case,所以 dp[i-1][0][0] = 0。

现在发现 k 都是 1,不会改变,即 k 对状态转移已经没有影响了。
可以进行进一步化简去掉所有 k:
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], -prices[i])
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
for (int i = 0; i < n; i++) {
if (i - 1 == -1) {
dp[i][0] = 0;
// 解释:
// dp[i][0]
// = max(dp[-1][0], dp[-1][1] + prices[i])
// = max(0, -infinity + prices[i]) = 0
dp[i][1] = -prices[i];
//解释:
// dp[i][1]
// = max(dp[-1][1], dp[-1][0] - prices[i])
// = max(-infinity, 0 - prices[i])
// = -prices[i]
continue;
}
dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);
dp[i][1] = Math.max(dp[i-1][1], -prices[i]);
}
return dp[n - 1][0];

第一题就解决了,但是这样处理 base case 很麻烦,而且注意一下状态转移方程,新状态只和相邻的一个状态有关,其实不用整个 dp 数组,只需要一个变量储存相邻的那个状态就足够了,这样可以把空间复杂度降到 O(1):

1
2
3
4
5
6
7
8
9
10
11
12
13
// k == 1
int maxProfit_k_1(int[] prices) {
int n = prices.length;
// base case: dp[-1][0] = 0, dp[-1][1] = -infinity
int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
for (int i = 0; i < n; i++) {
// dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
// dp[i][1] = max(dp[i-1][1], -prices[i])
dp_i_1 = Math.max(dp_i_1, -prices[i]);
}
return dp_i_0;
}

dp1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public int maxProfit(int[] prices) {
/**
* 输入:[7,1,5,3,6,4]
* 输出:5
*
* ======
*
* 记录【今天之前买入的最小值】
* 计算【今天之前最小值买入,今天卖出的获利】,也即【今天卖出的最大获利】
* 比较【每天的最大获利】,取最大值即可
*
*/

int max = 0;
int min = prices[0];

for (int price : prices) {
// 今天之前买入的最小值
min = Math.min(min, price);
// 今天的最大获利,price-min
// 比较每天的最大获利
max = Math.max(max, price-min);
}

return max;
}

dp2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
     /* 和最大子序列和相似
*
* 1。 找到前一天能获得的最大利润(最小值是0)
* 2。 今天的利润差
* 3。 比较
*/
public int maxProfit(int[] prices) {
int len = prices.length;
int res = 0;
// 前一天卖出可以获得的最大利润
int pre = 0;
for (int i = 1; i < len; i++) {
// 利润差
int diff = prices[i] - prices[i - 1];
// 状态转移方程:第i天卖出可以获得的最大利润 = 第i-1天卖出的最大利润 + 利润差
pre = Math.max(pre + diff, 0);
res = Math.max(res, pre);
}
return res;
}

122. 买卖股票的最佳时机 II

给定一个数组 prices ,其中 prices[i] 是一支给定股票第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

1
2
3
4
输入: prices = [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。

示例 2:

1
2
3
4
输入: prices = [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

示例 3:

1
2
3
输入: prices = [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。

分析

与121题不同的是,这里不限制交易次数,也就是k=Infinity

[k] = inifity = [k-1]

1
2
3
4
5
6
dp[i][k][0] = dp[i-1][k][1]+price[i], dp[i-1][k][0]
dp[i][k][1] = dp[i-1][k-1][0]-price[i], dp[i-1][k][1]


dp[i][0] = dp[i-1][1]+price[i], dp[i-1][0]
dp[i][1] = dp[i-1][0]-price[i], dp[i-1][1]

此时我们需要一个temp变量来储存上一次的值

dp[i][0]在还没有改变前原先的值是dp[i][1]

1
2
3
4
5
6
7
8
9
10
int maxProfit_k_inf(int[] prices) {
int n = prices.length;
int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
for (int i = 0; i < n; i++) {
int temp = dp_i_0;
dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
dp_i_1 = Math.max(dp_i_1, temp - prices[i]);
}
return dp_i_0;
}

309. 最佳买卖股票时机含冷冻期

给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 。

设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):

  • 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
  • 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。

示例:

1
2
3
输入: [1,2,3,0,2]
输出: 3
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]

思路

每次 sell 之后要等一天才能继续交易。只要把这个特点融入上一题的状态转移方程即可:

1
2
3
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-2][0] - prices[i])
解释:第 i 天选择 `buy` 的时候,要从 i-2 的状态转移,而不是 i-1 。

需要多出一个变量来储存,达成k=2的目的

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public int maxProfit(int[] prices) {
int n = prices.length;

int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
int temp = 0;
for(int i = 0; i<n;i++){
int dp_pre_0 = dp_i_0;
dp_i_0 = Math.max(dp_i_0,dp_i_1+prices[i]);
dp_i_1 = Math.max(dp_i_1,temp-prices[i]);
temp = dp_pre_0;
}
return dp_i_0;

}

714. 买卖股票的最佳时机含手续费

难度中等527

给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;整数 fee 代表了交易股票的手续费用。

你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。

返回获得利润的最大值。

注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。

示例 1:

1
2
3
4
5
6
7
8
输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8
解释:能够达到的最大利润:
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8

示例 2:

1
2
输入:prices = [1,3,7,5,10,3], fee = 3
输出:6

思路:

这里和122思路几乎一样,只需要再买入后加上手续费,就可以得到正确答案,这里同样也是不限制交易次数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public int maxProfit(int[] prices, int fee) {
int n = prices.length;

int dp_i_0 = 0;
int dp_i_1 = Integer.MIN_VALUE;

for (int i = 0; i<n;i++){
dp_i_0 = Math.max(dp_i_0,dp_i_1+prices[i]);
dp_i_1 = Math.max(dp_i_1,dp_i_0-prices[i]-fee);
}

return dp_i_0;

}

123. 买卖股票的最佳时机 III

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

1
2
3
4
输入:prices = [3,3,5,0,0,3,1,4]
输出:6
解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。

示例 2:

1
2
3
4
5
输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

示例 3:

1
2
3
输入:prices = [7,6,4,3,1] 
输出:0
解释:在这个情况下, 没有交易完成, 所以最大利润为 0。

示例 4:

1
2
输入:prices = [1]
输出:0

题解:

注意这里的不同点在于:k的处理

k = 2 和前面题目的情况稍微不同,因为上面的情况都和 k 的关系不太大。要么 k 是正无穷,状态转移和 k 没关系了;要么 k = 1,跟 k = 0 这个 base case 挨得近,最后也没有存在感。

原先的状态转移方程

1
2
3
原始的动态转移方程,没有可化简的地方
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])

通用的全局解法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public int maxProfit_k(int[] prices) {
int n =prices.length;
int max_k = 2;
int[][][] dp = new int[n][max_k + 1][2];
for (int i = 0; i < n; i++) {
for (int k = max_k; k >= 1; k--) {
if (i - 1 == -1) {
dp[i][k][0]=0;
dp[i][k][1]=-prices[i];
continue;
}
dp[i][k][0] = Math.max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);
dp[i][k][1] = Math.max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]);
}
}
// 穷举了 n × max_k × 2 个状态,正确。
return dp[n - 1][max_k][0];
}

这里 k 取值范围比较小,所以可以不用 for 循环,直接把 k = 1 和 2 的情况全部列举出来也可以:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
dp[i][2][0] = max(dp[i-1][2][0], dp[i-1][2][1] + prices[i])
dp[i][2][1] = max(dp[i-1][2][1], dp[i-1][1][0] - prices[i])
dp[i][1][0] = max(dp[i-1][1][0], dp[i-1][1][1] + prices[i])
dp[i][1][1] = max(dp[i-1][1][1], -prices[i])

int maxProfit_k_2(int[] prices) {
int dp_i10 = 0, dp_i11 = Integer.MIN_VALUE;
int dp_i20 = 0, dp_i21 = Integer.MIN_VALUE;
for (int price : prices) {
dp_i20 = Math.max(dp_i20, dp_i21 + price);
dp_i21 = Math.max(dp_i21, dp_i10 - price);
dp_i10 = Math.max(dp_i10, dp_i11 + price);
dp_i11 = Math.max(dp_i11, -price);
}
return dp_i20;
}

188. 买卖股票的最佳时机 IV

难度困难557

给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

1
2
3
输入:k = 2, prices = [2,4,1]
输出:2
解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。

示例 2:

1
2
3
4
输入:k = 2, prices = [3,2,6,5,0,3]
输出:7
解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。
随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。

思路:

属于k = any integer

有了上一题 k = 2 的铺垫,这题应该和上一题的第一个解法没啥区别。但是出现了一个超内存的错误,原来是传入的 k 值会非常大,dp 数组太大了。现在想想,交易次数 k 最多有多大呢?

一次交易由买入和卖出构成,至少需要两天。所以说有效的限制 k 应该不超过 n/2,如果超过,就没有约束作用了,相当于 k = +infinity。这种情况是之前解决过的。

直接把之前的代码重用:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
class Solution {
public int maxProfit(int max_k, int[] prices) {
int n = prices.length;
if (max_k > n / 2) return maxProfit_k_inf(prices);

int[][][] dp = new int[n][max_k + 1][2];
for (int i = 0; i < n; i++) {
for (int k = max_k; k >= 1; k--) {
if (i - 1 == -1) {
dp[i][k][0]=0;
dp[i][k][1]=-prices[i];
continue;
}
dp[i][k][0] = Math.max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);
dp[i][k][1] = Math.max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]);
}
}
// 穷举了 n × max_k × 2 个状态,正确。
return dp[n - 1][max_k][0];
}

public int maxProfit_k_inf(int[] prices){
int n = prices.length;

int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;

for(int i = 0; i< n; i++){
int temp = dp_i_0;
dp_i_0 = Math.max(dp_i_0,dp_i_1+prices[i]);
dp_i_1 = Math.max(dp_i_1,temp - prices[i]);
}

return dp_i_0;

}

}

  • Post title:买卖股票的最佳时机问题汇总
  • Post author:Yuxuan Wu
  • Create time:2021-07-10 22:04:23
  • Post link:yuxuanwu17.github.io2021/07/10/2021-07-11-买卖股票的最佳时机问题集合/
  • Copyright Notice:All articles in this blog are licensed under BY-NC-SA unless stating additionally.